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Abstract

Key message The identification of genetic factors influ-
encing the accumulation of individual glucosinolates in
broccoli florets provides novel insight into the regula-
tion of glucosinolate levels in Brassica vegetables and
will accelerate the development of vegetables with glu-
cosinolate profiles tailored to promote human health.
Abstract Quantitative trait loci analysis of glucosi-
nolate (GSL) variability was conducted with a B. olera-
cea (broccoli) mapping population, saturated with single
nucleotide polymorphism markers from a high-density
array designed for rapeseed (Brassica napus). In 4 years
of analysis, 14 QTLs were associated with the accumula-
tion of aliphatic, indolic, or aromatic GSLs in floret tissue.
The accumulation of 3-carbon aliphatic GSLs (2-propenyl
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and 3-methylsulfinylpropyl) was primarily associated with
a single QTL on CO05, but common regulation of 4-car-
bon aliphatic GSLs was not observed. A single locus on
C09, associated with up to 40 % of the phenotypic vari-
ability of 2-hydroxy-3-butenyl GSL over multiple years,
was not associated with the variability of precursor com-
pounds. Similarly, QTLs on C02, C04, and C09 were asso-
ciated with 4-methylsulfinylbutyl GSL concentration over
multiple years but were not significantly associated with
downstream compounds. Genome-specific SNP markers
were used to identify candidate genes that co-localized to
marker intervals and previously sequenced Brassica olera-
cea BAC clones containing known GSL genes (GSL-ALK,
GSL-PRO, and GSL-ELONG) were aligned to the genomic
sequence, providing support that at least three of our 14
QTLs likely correspond to previously identified GSL loci.
The results demonstrate that previously identified loci do
not fully explain GSL variation in broccoli. The identifica-
tion of additional genetic factors influencing the accumula-
tion of GSL in broccoli florets provides novel insight into
the regulation of GSL levels in Brassicaceae and will accel-
erate development of vegetables with modified or enhanced
GSL profiles.

Introduction

Glucosinolates (GSLs) are a class of sulfur-containing
secondary metabolites found almost exclusively in the
order Capparales and are most commonly associated with
Brassica vegetable, condiment, and oilseed plants. While
the GSLs appear void of biological activity, the hydro-
lytic breakdown products of some GSLs (isothiocyanates,
in particular) impact flavor, host plant resistance and
mediate several positive health outcomes in mammalian
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systems including inhibiting tumor initiation, promo-
tion, and progress (Bryant et al. 2010; Davis et al. 2009;
Shankar et al. 2008; Thejass and Kuttan 2006). The induc-
tion of detoxification enzymes (including glutathione-S-
transferase, quinone reductase, and others) by isothiocy-
anates, through the Nrf2-mediated anti-oxidant response
element pathway, has been well-documented in vitro and
in vivo (reviewed in Zhang and Tang 2007). Evidence
is also mounting that the same compounds may pro-
vide multi-faceted protection against cancer by altering
endogenous cell mechanisms, including cell cycle arrest,
apoptosis, histone acetylation, and mitogen-activated
protein kinase signaling (Clarke et al. 2008; Jeffery and
Araya 2009). Isothiocyanates differ in potency and sites
of maximal bioactivity (Munday and Munday 2004), with
sulforaphane (1-isothiocyanato-4-methylsulfinylbutane)
derived from glucoraphanin (the principle GSL found in
broccoli), the most potent (in terms of health benefits) and
the most studied agent of this class.

Over a 120 glucosinolates have been described, but in
general fewer than a dozen are observed in any given spe-
cies (Fahey et al. 2001). Among Brassica oleracea veg-
etables, these include primarily 3- and 4-carbon (3C and
4C) length aliphatic GSLs (derived from methionine),
indolic GSLs (derived from tryptophan), and a single aro-
matic GSL (derived from phenylalanine) (Kushad et al.
1999). A list of GSLs found in B. oleracea vegetables,
along with their structures and common names, is pro-
vided in Table 1. The biosynthesis and regulation of GSLs
have been extensively studied in the related model plant
Arabidopsis and several outstanding reviews are available
(Baskar et al. 2012; Grubb and Abel 2006; Halkier and
Gershenzon 2006; Sgnderby et al. 2010). Briefly, GSL
synthesis involves three distinct stages: the deamination
and carbon-chain elongation of the precursor amino acid
(methionine and phenylalanine), glucone core synthesis,
and post-core modifications that can include hydroxyla-
tions, oxygenations, alkenylations, and other reactions
(Fig. 1).

The GSL profile of broccoli is distinct from other veg-
etables of the species (cabbage, cauliflower, and others)
in that glucoraphanin (4-methylsulfinylbutyl GSL) is the
predominant aliphatic GSL observed (Kushad et al. 1999).
A ninefold variation of glucoraphanin content (primar-
ily genetic in nature) has been observed among broccoli
accessions over multiple environments (Brown et al. 2002).
Broccoli containing levels of glucoraphanin at the high end
of this range have been marketed under the brand name
Beneforte® and were developed through the introgression
of chromosomal regions from B. villosa (a non-heading
member of the B. oleracea n = 9 complex) (Traka et al.
2013). As this material is proprietary, it is not freely acces-
sible for research or cultivar development. Variation in the
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concentration of additional aliphatic GSLs has also been
observed. An evaluation of 50 broccoli accessions (Kushad
et al. 1999) suggested that while most broccoli produces
only trace or undetectable levels of progoitrin (2-hydroxy-
3-butenyl), a significant number of accessions (~10 %)
generated progoitrin in concentrations that represent half or
more of the observed levels of glucoraphanin. This can be
a concern, as the principle breakdown product associated
with progoitrin (2-hydroxy-3-butenyl isothiocyanate) has
been associated with off-flavors and under appropriate con-
ditions can form 5-ethenyl-1,3-oxazolidine-2-thione (goi-
trin), an anti-nutritional compound that competes for iodine
and can suppress thyroid gland function at higher concen-
trations (Greer and Deeney 1959).

In Arabidopsis, much of the structural variation of GSLs
is attributable to single genes or small clusters of genes at
a limited number of loci. The GSL-ELONG locus con-
tains up to three tandem methylthioalkylmalate synthase
(MAM) genes that differ in their affinity for extending
short- or long-chain aliphatic GSLs and share a considera-
ble degree of sequence similarity to the 2-isopropylmalate
synthase (2-IPMS) gene family (Kroymann et al. 2001).
Polymorphisms among these genes have resulted from
whole or partial gene deletions, sequence exchange, and
fusion between flanking genes within the cluster (Bend-
eroth et al. 2009). Two tandem repeated MAM genes rep-
resenting potential orthologs to GSL-ELONG were identi-
fied from the sequenced B. oleracea (‘Early Big’ broccoli)
BAC clone ‘B19N3’ (Gao et al. 2005). Further sequencing
of a second BAC clone (‘B21F5’) from the same accession
identified a partial 2-IPMS gene (designated GSL-PRO)
that was associated with 3C aliphatic GSLs (Gao et al.
2006).

In Arabidopsis, the locus GSL-AOP (or GSL-ALK/
GSL-OHP) contains three tandem 2-oxoglutarate-
dependent dioxygenase genes (2-ODD) designated as
GSL-AOP1-3. While the function of GSL-AOP1 is cur-
rently unknown, GSL-AOP2 catalyzes the conversion
of methylsulphenyl-GSL (glucoiberin and glucorapha-
nin) to alkenyl-GSLs (sinigrin and gluconapin). GSL-
AOP3 in Arabidopsis is associated with the production
of hydroxypropyl GSL (Kliebenstein et al. 2001), a com-
pound not found in Brassica vegetables. A potential B.
oleracea ortholog to GSL-AOP2 (GSL-ALK) has been
identified from a third sequenced broccoli BAC clone
(‘B21H13’) (Gao et al. 2004). Comparisons of GSL-ALK
alleles from broccoli and collard identified a 2-bp dele-
tion in some broccoli accessions that likely results in a
non-functional enzyme due to a frame shift. It has been
proposed that blocking the side chain modification path-
way by introducing null alleles at this locus would lead to
glucoraphanin enrichment of additional Brassica vegeta-
bles (Liu et al. 2012). The GSL-OH locus in Arabidopsis
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Table 1 Glucosinolates found in B. oleracea vegetables: structures, common names, and molecular weight

Core structure of glucosinolate

T

N
N

OH

HO OH
R S o CH,OH

OSO,H
Class Common name R-side chain MW*
1. Aliphatic Glucoraphanin 4-Methylsulfinylbutyl N /\/\/ 357
40) s
d
Progoitrin (2R)-2-Hydroxy-3-butenyl 309
Hzc/\i/
G+
Gluconapin 3-Butenyl /\/ 293
(30O) Sinigrin 2-propenyl \/ 279
Glucoiberin 3-Methylsulfinylpropyl \S /\/\ 399
o]
H
2. Indolic Glucobrassicin 3-Indolylmethyl N 368
Neoglucobrassicin N-Methoxy-3-indolylmethyl _ o—__ 398
N
3. Aromatic Gluconasturtiin 2-Phenethyl 343

# Molecular weight for glucosinolate compounds

also contains a 2-ODD gene that encodes the enzyme
responsible for the conversion of but-3-enyl (gluconapin)
to 2-hydroxybut-3-enyl (progoitrin) GSL (Hansen et al.
2008). To date, a homologous gene has yet to be identi-
fied in B. oleracea.

In addition to key structural genes, several Arabidop-
sis regulatory genes (IQD1, SLIMI1, DOF1, MYB28,
MYB29, MYB76, MYB34, MYBS51, and MYB122) have
been identified through the use of mutation lines, trans-
genic over-expression, and e-QTL profiling (Celenza
et al. 2005; Gigolashvili et al. 2007a, b; Hirai et al.
2007; Levy et al. 2005; Malitsky et al. 2008; Maruyama-
Nakashita et al. 2006; Skirycz et al. 2006; Sgnderby

et al. 2007). Specificity of these regulatory genes has
been observed, with some (MYB51, MYB122) associ-
ated with indolic GSL, while others are primarily associ-
ated with aliphatic GS accumulation (MYB28, MYB29,
MYB76). Arabidopsis transgenic studies have demon-
strated the up-regulation of a number of core GSL bio-
synthesis genes in response to these regulatory genes,
but the relationship among the various transcription fac-
tors and their relative contributions to GSL accumula-
tion remains to be clarified (Frerigmann and Gigolash-
vili 2014).

The objective of the present study was to utilize
a B. oleracea sub-species italica (broccoli) mapping
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Methionine (MET)
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Fig. 1 Simplified scheme of glucosinolate biosynthesis in Arabidopsis thaliana (Baskar et al. 2012; Bender and Celenza 2009; Sgnderby et al.

2010; Zandalinas et al. 2012)

population (VI-158 x BNC), recently saturated with sin-
gle nucleotide polymorphism (SNP) markers from the
Illumina high-density (60K iSelect format) array designed
for rapeseed (Brassica napus, N = 19 AACC), to identify
QTL associated with qualitative and quantitative GSL var-
iability in broccoli florets (Brassica oleracea, N = 9 CC).
The parents of the population differ significantly in both
the presence of specific aliphatic GSLs (progoitrin, glu-
coiberin, and sinigrin) and in the overall accumulation of
glucoraphanin (Brown et al. 2002; Kushad et al. 1999).
A second objective of the study was to utilize the link-
age map associated with this population to identify puta-
tive candidate genes co-localizing with QTL. The map was
constructed utilizing genome-specific markers anchored to
the TO1000 B. oleracea reference sequence and was most
recently used to identify candidate genes associated with
three consistent loci impacting the accumulation of carot-
enoids in the same population (Brown et al. 2014). The
current study includes 4 years of analysis and two distinct
locations.

@ Springer

Materials and methods
Plant material

Two B. oleracea L. ssp. italica accessions, VI-158, a cala-
brese-type double haploid derived from the F; hybrid
‘Viking’ (courtesy of Dr. Mark Farnham, USDA Vegetable
Lab, Charleston, SC) and ‘Brocolette Neri E. Cespuglio’
(BNC), a brocolette neri-type (accession PI 462209 of the
USDA Plant Genetic Resource Unit Geneva, NY), were
selected from a larger set of genotypes based upon their
respective floret glucosinolate profiles (Brown et al. 2002;
Kushad et al. 1999). A single F1 plant from a cross between
the parents was bud pollinated to produce F, plants which
were subsequently bud pollinated to produce sufficient F,.4
family seed for genomic DNA extraction and multiple years
of phenotypic and phytochemical evaluation. The phyto-
chemical profiles of the parents, the development of popula-
tion and its use in identifying genetic factors associated with
both phytochemical variation and agronomic traits have been
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previously described (Brown et al. 2002, 2007, 2014; Eber-
hardt et al. 2005; Guzman et al. 2012; Kushad et al. 1999).

Replicated F,.; families were grown at two locations: the
University of Illinois South Farm, Urbana, I, USA (1999
and 2000) and the Piedmont Research Station, Salisbury,
NC, USA (2009 and 2010). In Illinois, approximately 24
plants of each family were sown in the greenhouse on June
10, 1999 and June 17, 2000 and transplanted into field plots
at the University of Illinois South Farm after 2 weeks of
acclimation on July 22, 1999 and July 26th, 2000. The soil
type at Illinois was a Drummer silty clay loam. Approxi-
mately 4 weeks after transplanting, plants were side-
dressed with 13N-13P-8K-17S granular fertilizer with
added sulfur at a rate of 17 kg/hectare. Standard broccoli
cultivation practices were followed with pesticides applied
as needed. The field design was a randomized complete
block with two replicates of 12 plants spaced 0.3 m apart
with 0.9 m between rows. At commercial maturity, heads
were harvested from each plot and packed in ice for trans-
port to the adjacent laboratory. Samples were cut to stand-
ard size florets with equal proportions of stalk tissue and
frozen in liquid nitrogen. Frozen samples were stored at
—80 °C until lyophilization. Lyophilized tissue was ground
to a fine powder using a coffee bean grinder. Samples were
stored at —20 °C in the dark until analysis. As F,.; families
were segregating for maturity, multiple harvests were con-
ducted based upon uniform maximal compactness of the
heads. This approach was used previously with the same
population to identify consistent QTL associated with har-
vest date and head size (Brown et al. 2007). Proportional
ground tissue from each date (weighted by the number of
heads harvested on each date) was combined into a single
bulked sample for analysis from each replication. In 1999,
145 F,.; families were evaluated but due to limited avail-
ability of seed at the time, only 87 families were replicated
in 2000. In North Carolina, seedlings were transplanted to
the field at Piedmont Research Station, Salisbury, NC, on
Sept. 11, 2009 (136 families) and 2010 (146 families) using
the same experimental design as used in Illinois. Age, con-
dition, and spacing of the plants were the same as Illinois,
but black plastic mulch and drip irrigation was added in
North Carolina. Also, due to the high levels of residual sul-
fur present in the soil, no side-dressing was done. As in Illi-
nois, multiple harvests were conducted at a uniform stage
of compactness. No fewer than five heads were harvested
from each replicate (a minimum of ten progeny total per
family). Sample handling and preparation was the same at
both locations.

Glucosinolate extraction

Finely ground, dry samples were added to 10 mL Oak
Ridge tubes (VWR, Radnor, PA), capped, and incubated

on an analog dry block heater (VWR) at 95 °C for 10 min.
Next, 2 mL of extraction solvent (50 % MeOH in dd water)
was added to each sample tube, re-capped, and vortexed
to mix tissue with solvent. Occasional vortexing was
applied during sample incubation (10 min) on the heat-
ing blocks. Samples were cooled for 5 min on ice prior
to adding 500 pL of benzylglucosinolate (internal stand-
ard); samples were then vortexed, and then centrifuged at
3000 rpm for 15 min at 10 °C. The supernatant was poured
off into a new glass tube and saved on ice. The pellet was
re-extracted using the same procedure without the addi-
tion of the internal standard and supernatants of the same
sample were pooled into corresponding glass tubes. From
the well-mixed supernatant, 1 mL was pipetted into a 2 mL
Eppendorf tube (FisherScientific, Pittsburg, PA) and com-
bined with 150 pL of 0.5 M lead and barium acetate solu-
tion, vortexed, then centrifuged for 3 min at 2000 rpm to
allow proteins to precipitate. The supernatant from each
Eppendorf tube was poured to a drained poly-prep chroma-
tography column (Bio-Rad, Hercules, CA) containing pre-
charged DEAE Sephadex A-25 (Sigma Chem., St. Louis).
Once solution passed through the column, 3 mL of 0.02 M
pyridine acetate was added, followed by 3 mL of deionized
water. Glucosinolates were desulfated using S3009 sul-
fatase enzyme (Sigma, St. Louis, MO). To each poly-prep
column, 10 units of sulfatase suspended in 500 uL deion-
ized water were added and the columns were capped for
18 h. Desulfated GSLs were eluted from the poly-prep col-
umn by adding 3 mL of deionized water, filtered using 0.2-
pm nylon syringe filters (Thermo Scientific, Rockwood,
TN), and used for HPLC quantification analyses. The inter-
nal standard for GSLs (benzyl GSL) was purchased from
POS Pilot Plant Crop., Saskatchewan, Canada, and was
used to calculate the individual compound concentrations
in floret dry tissues. Individual GSL concentrations (umol/g
floret dry tissue) were calculated in comparison to certified
GSL levels in a standard rapeseed reference material (BCR
367, Commission of the European Community Bureau of
References, Brussels, Belgium).

Quantification of glucosinolates

In Illinois, GSLs were analyzed with a Dionex DX500
HPLC system (Thermo Scientific, Sunnyvale, CA) consist-
ing of a variable UV detector set at a maximum absorp-
tion wavelength of 229 nm. Injecting samples into HPLC
was achieved using an AS3500 autosampler (4 °C). The
separation of GSLs was achieved using LiChrospher 100
Reversed-phase C18 column, 250 mm x 4.6 mm X 5 pm
(Grace Davison Discovery Science, Deerfield, IL). The
mobile phase was composed of solvent A (0.1 % ammo-
nium acetate in H20 with 0.1 % acetonitrile) and solvent B
(100 % acetonitrile). The gradient system was 0, 25, 0, and
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0 % of solvent B at 0, 32, 34, 36, and 40 min, respectively,
with a constant flow rate of 1 mL/min.

In North Carolina, the GSL quantification was conducted
using a 1200 HPLC system attached to a 6510 Q-TOF
(Agilent Technologies, Santa Clara, CA). The separation
of compounds was also achieved using LiChrospher 100
Reversed-phase C18 column, 250 mm x 4.6 mm X 5 pm
(Grace Davison Discovery Science, Deerfield, IL). The sys-
tem contained a controlled temperature autosampler (4 °C)
and column compartment (20 °C). The same solvent gra-
dient system and flow rate were applied as above. A sub-
set of samples from North Carolina were sent to Illinois to
determine if differences in analysis platforms substantially
affected the quantification of GSLs and the results were
comparable (data not shown).

Phenotypic data analysis

Statistical analyses were conducted with SAS software
(version 9.2 for Windows; SAS Institute, Cary, NC).
Means, standard deviations, and ranges were generated
with Proc Univariate. Analysis of variance (ANOVA) was
conducted for all traits with all factors (genotype, years,
replication, genotype x year) considered random using
Proc GLM procedures. The linear random model used was
Vi =M+ G+ L+ YD)y +RV)y + G x L + G x L
X Y + &ijiy, Where y = response from the experimental
unit, 4 = overall mean, G = genotype (family), L = loca-
tion, ¥ = year, R = replication (block), Y(L) = year
within location, R(Y) = block within year, G x L = geno-
type x location interaction, G x L x Y = genotype x loca-
tion x year interaction, and & = experimental random error.
Pearson correlation coefficients (r) were generated among
all compound combinations, average harvest date and aver-
age head size, using the Proc Corr. statement.

Identification of QTL associated with glucosinolates

The construction of the genetic linkage map has been pre-
viously described (Brown et al. 2014). Briefly, the map
was constructed using Brassica napus (AACC) single
nucleotide markers (Illumina Brassica Infinium array)
and contains 547 markers with an average interval size
of 1.7 cM (no intervals exceeding 7.5 cM). The map cov-
ers 429,265,051 bp of the 446,905,700-bp TO1000 refer-
ence assembly (96 %). SNP marker nomenclature includes
a designation corresponding to the progenitor diploid
genome (“A” = B. rapa or “C” = B. oleracea) followed by
the position of the SNP as referenced by the ‘Chiifu-401’ or
“TO1000’ genome sequence, respectively.

MapQTL® 6 (Van Oojen et al. 2002) was used to iden-
tify QTL associated with individual aliphatic, total indolic,
and aromatic GSL in two locations [Illinois (1999 and
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2000) and North Carolina (2009 and 2010)]. Analysis was
conducted on average family values for individual GSLs
in all 4 years. Preliminary QTL analysis for total aliphatic
GSLs resulted in the identification of the same loci asso-
ciated with the predominant aliphatic GSL in all environ-
ments (glucoraphanin), but the significance of the QTL and
the percentage of phenotypic variance was dramatically
reduced likely due to the divergent influence of the addi-
tional four aliphatic GSLs. Final analysis was conducted
only on the individual aliphatic GSLs. Conversely, analy-
sis of the individual indolic GSLs produced less significant
results (at the same loci) and explained less of the variation
than combining them into a single category of total indolic
GSLs.

Single-factor analysis was performed using the
MapQTL Kruskal-Wallis non-parametric test and the
results were used to select markers for MQM model inclu-
sion using default settings of the provided automated co-
factor selection program. Several iterations were conducted
to produce an optimal set of co-factors for analysis of each
compound in each year. Non-restricted multiple-QTL map-
ping (MQM) was used with the default settings adjusted to
a scan distance of 0.2 cM. Genome-wide threshold values
(LOD = 4.0, P < 0.03) for declaring the presence of QTLs
were estimated from 1000 permutations of each phenotypic
trait using the programs provided bootstrapping algorithm.
Confidence intervals were established using a 2 LOD drop
off on either side of the maximum score. QTL from indi-
vidual years was considered the same if confidence inter-
vals overlapped and the magnitude and direction of the
QTL effect was common between years.

Geneious® version 6.1.5 (Biomatters: http:/www.
geneious.com) was used to conduct protein to nucleotide
Blast searches in all six possible reading frames of the
TO1000 B. oleracea reference genome draft (Agriculture
and Agri-Food Canada, Saskatoon, Canada, submitted)
for putative candidate genes occurring within or adjacent
to significant intervals. The alignment program Exoner-
ate (Slater and Birney 2005) was used to determine an
amino acid alignment percentage for the putative candi-
date genes and a 75 % identity match was used to declare
a putative candidate from either sequence. A list of the
sequences used as queries and results of these searches
is provided in Supplement 1. B. oleracea genomic BACs
containing previously described glucosinolate genes (Gao
et al. 2004, 2005, 2006) were aligned to the TO1000 ref-
erence sequence using the programs Exonerate, Nucmer
(Mummer software, version 3.22, (Kurtz et al. 2004) and
BLAST (NCBI blast+, version 2.2.29, blastn, e-score
cutoff <1e-90, word size = 78) to identify large, highly
similar regions with high percent identity. Chromosomal
regions that failed to align to the entire length of the BACs
were filtered out.
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Results
Analysis of glucosinolates

Means, standard deviations, and ranges of GSLs detected
in the florets of broccoli F,.; families from four environ-
ments are presented in Table 2. Five aliphatic GSLs (glu-
coraphanin, gluconapin, progoitrin, glucoiberin, and sini-
grin) were detected at appreciable levels among the F,.;
families in 1999, 2009, and 2010. Only trace amounts of
sinigrin were detected in 2000 and were not reported. Glu-
coraphanin was the predominant aliphatic GSL detected in
all environments and concentrations ranged from a fourfold
difference among families in Illinois (1999) to an eightfold
differences among families in North Carolina (2010). Gluc-
oraphanin concentrations were higher in Illinois and repre-
sented on average 66.5 % of the total aliphatic GSLs, while
in North Carolina they represented 57 %.

Considerable variation in gluconapin and progoitrin was
detected among families in all environments. Progoitrin
accumulation occurs in the parent VI-158 (but not BNC) and
the distribution of this compound among families suggests
the segregation of single gene with ~25 % of families across
environments accumulating trace or undetectable amounts of
progoitrin. On average, progoitrin represented 13 % of total
aliphatic GSLs in Illinois but almost 25 % of total aliphatic
GSLs in North Carolina. Gluconapin accumulated in both
parents and all families (across environments), but consid-
erable variation was evident. The average concentration of
gluconapin was 14.5 % of total aliphatic GSLs in Illinois
and 16.5 % in North Carolina. The concentration of indolic
GSLs was considerably higher in Illinois than in North Caro-
lina, but the average concentration of the aromatic GSL (glu-
conasturtiin) was comparable between locations.

Significant genetic, location, and year effects were
detected among families common to all 4 years of analysis
(Table 3). Significant interaction terms were also detected.
Correlations among individual aliphatic GSLs ranged from
non-significant to moderate with the highest observed cor-
relations of r = 0.56 (between the 3C aliphatics, glucoi-
berin, and sinigrin) and r = 0.41 (between the 3C and 4C
aliphatic methylsulfinyl GSLs, glucoiberin, and glucorapha-
nin) (Table 4). Correlations among 4C aliphatic GSLs (gluc-
oraphanin, gluconapin, and progoitrin) were not significant.
Head size was not significantly correlated to most GSLs but
moderate correlations to harvest dates were observed, which
is consistent with our previous study (Kushad et al. 1999).

QTL associated with glucosinolate variability

QTL analysis identified 14 loci (designated GSLOI1-
14) associated with GSL variability at or above the LOD

Table 2 Means, standard deviations, and range of glucosinolates in
the florets of parents, F,, and F,.; families in the broccoli population
(VI-158 x BNC) over 4 years of analysis

Glucosinolate®  Parental line F,.; population
VI-158 BNC F, Mean £ SD  Range
Glucoraphanin
IL 1999 9.5 169 145 165+6.9 6.8-29.6
IL 2000 11.9 149 11.7 169+£6.9 5.6-31.6
NC 2009 10.8 11.8 - 122+42 3.4-28.8
NC 2010 11.3 11.7 9.6  9.6+32  2.8-209
Progoitrin
IL 1999 10.4 0.1 24 344+£29 0.0-104
IL 2000 8.7 0.5 30 3.0+27 0.3-14.4
NC 2009 3.6 0.1 - 57+48 0.0-26.1
NC 2010 3.4 0.1 1.7 37+29  0.0-16.8
Gluconapin
IL 1999 5.0 3.6 60 41+14 20-85
IL 2000 4.8 5.4 6.8 43+2.1 1.0-9.1
NC 2009 2.6 2.0 - 27406 1.5-5.0
NC 2010 2.7 32 36 29406 1.3-5.8
Sinigrin
IL 1999 1.2 - 03 03+03 0.0-1.6
IL 2000 - - - - -
NC 2009 0.4 - - 03+03 0.0-1.4
NC 2010 0.4 - 03 04x03 0.0-1.4
Glucoiberin
IL 1999 1.4 0.7 1.5 1.0+1.0 0048
IL 2000 14 0.7 1.5 1.3+£1.0 0040
NC 2009 0.4 0.4 - 05+£06  0.045
NC 2010 0.4 0.3 03 0404 0029
Total aliphatic
IL 1999 27.6 213 247 250+84 10.6-44.8
1L 2000 26.8 215 229 256+84 10.5-42.0
NC 2009 17.8 14.3 - 214+£72 73457
NC 2010 18.2 152 155 169+49 6.5-32.2
Glucobrassicin
IL 1999 9.4 8.2 70 50+£20 0.1-103
IL 2000 72 7.4 55 72435 3.1-14.9
NC 2009 6.7 4.4 - 43+£15 1.5-9.4
NC 2010 6.3 4.0 26 38%15 1.0-8.7
Neoglucobrassicin
IL 1999 1.4 1.8 12 25418 0.4-7.4
IL 2000 6.3 1.2 09 64+50 1.1-14.7
NC 2009 1.3 1.0 - 1.1£0.8 0.2-9.1
NC 2010 1.1 0.9 07 0.8%£05 0.1-3.8
Total indolic
IL 1999 10.8 10.0 82 75429 1.3-17.0
IL 2000 134 8.6 6.4 13.6+52 5.6-24.6
NC 2009 8.0 5.4 - 53+19 1.9-14.6
NC 2010 7.5 49 33 46x17 1.4-99
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Table 2 continued

Glucosinolate®  Parental line F,.; population
VI-158 BNC F, Mean = SD  Range
Gluconasturtiin
IL 1999 0.7 1.0 05 12411 0.4-24
IL 2000 1.5 1.1 1.0 18+12 07-34
NC 2009 1.7 1.5 - 1.4£04 0.6-24
NC 2010 1.7 1.6 14 12+04 0425

* Glucosinolates reported for 1999 and 2000 were measured in Illi-
nois location (IL), while for 2009 and 2010 measured in North Caro-
lina location (NC)

® Glucosinolate values are expressed as pmol/g freeze dried tissue

threshold of 4.0 on seven chromosomes (Table 5; Fig. 2).
Eleven of the identified QTLs were detected within the
same map intervals in multiple years. Variation in 3C ali-
phatic GSLs (glucoiberin and sinigrin) was associated
with a single QTL (GSLO0S8) on CO5 that accounted for up
to 56 % of the phenotypic variation associated with glu-
coiberin over 4 years and 24 % of the phenotypic vari-
ation of sinigrin over 3 years. The QTL was flanked by
the markers Bn-C05-07607063 and Bn-C05-09973851.
BLAST searches of the associated interval in the TO1000
sequence identified multiple GSL candidates, including
a putative copy of 2-IPMS (2-isopropylmalate synthase)
at 8,846,276 bp. The allele enhancing the 3C aliphatics

Table 3 Analysis of variance of individual and total glucosinolates of 67 F,.; families of the broccoli population (BNC x VI158) evaluated in

Illinois (1999 and 2000) and North Carolina (2009 and 2010)

Source Glucorapha- Progoitrin = Gluconapin ~ Sinigrin  Glucoi-  Total Glucobrassicin - Neogluco- Total Glucona-
nin berin aliphatics brassicin  indols  sturtiin

Family 119%%# @ 5]%* 10%* 0.2%%* 3.6%%* 271%* 31%* 27%* 55%* 1.5%*

Location 13397%%  62%%* 1001 ** 6.9%%* 121.8%*%  21884**  1920%* 2965%%* 6594%* 42 6%*

Year (location) 1005%*  246%* T 1.8%% 0.3 19837%* 14 S11%%* 1831%%  1.6%*

Rep (year) 28 1.0 1.0 0.0 0.3 31 33%* 127%%* 485%*%  (0.8%*

Family x 35%Ek 4% 6+* 0.2%* 1.4%* Wk 117%% 20%* 35%* 0.6%*
location

Family x 19%%  10%* TE* 0.17%%* 0.3%%* 43%* 12%% 11 28%* 0.4%*
location x year

Error 11 4 1.0 0.0 0.1 18 4 8 15 0.2

R? 92 87 93 91 93 92 88 83 86 85

CVv® 20 22 22 28 29 16 31 31 24 26

# Significant at P < 0.01
b Coefficient of variation

Table 4 Pearson’s correlation coefficients between individual glucosinolate measured in the F,.; broccoli population

Progoitrin  Gluconapin Sinigrin  Glucoiberin Total aliphatics Glucobrassicin  Neoglucobras- Total indols Glucona-
sicin sturtiin
Glucoraphanin  0.192 0.181 0.32%,%  0.41%* 0.84%** —0.13 0.22 0.08 0.37%*
Progoitrin 0.29%* 0.6%* 0.10 0.65%* —-0.20 0.06 —0.06 0.43%%*
Gluconapin 0.39**  0.07 0.46%* 0.14 0.18 0.23 0.48%*
Sinigrin 0.56%* 0.66%* —0.11 0.347%%* 0.20 0.57%%*
Glucoiberin 0.46%* —0.01 0.23 0.18 0.41%*
Total aliphatics —0.15 0.24 0.10 0.59%*
Glucobrassicin 0.03 0.69%* —0.09
Neoglucobras- 0.73%%* 0.56%*
sicin
Total indolic 0.36%*

& * and ** are significant at P < 0.05 and P < 0.01, respectively
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(glucoiberin and sinigrin) was contributed by VI-158 and
functioned in a predominately additive manner.

Unlike the 3C aliphatic GSLs, no single locus was
detected in any year that was associated with more than
one 4C aliphatic GSL. Three QTLs on C02, C04, and C09
(designated GSLO03, GSLO7, and GSL14, respectively)
were associated with glucoraphanin in multiple years.
GSLO3 explained up to 18.5 % of the phenotypic varia-
tion in 3 years of analysis and was flanked by the mark-
ers C02-49900179 and C02-51859664. BLAST searches
of the TO1000 genomic sequence identified three putative
GSL candidate genes in this interval including a MYB
28-3 transcription factor (50,898,605 bp) and at least one
potential MAM gene (50,470,745 bp). GSLO3 was also
significantly associated with the 3C aliphatic glucoiberin,
in 2010 (LOD = 4.5), but fell short of the genome-wide
significance rate for the same compound in 2009 and 1999
(LOD = 3.5 and 2.5, respectively). Glucoraphanin and glu-
coiberin concentrations were increased by the same paren-
tal allele contributed by BNC.

GSLO7 on C04 explained up to 12 % of glucorapha-
nin variation in 3 years of analysis and was flanked by the
markers C04-04379394 and Bn-A04-13116453. A BLAST
search of this region did not readily identify a putative
GSL candidate. The allele at this locus enhancing gluc-
oraphanin concentration was also contributed by BNC. A
third QTL (GSL14) impacting glucoraphanin concentra-
tion was identified on C09 but was only observed in the
2 years of analysis from North Carolina (2009, 2010). The
interval containing this locus was flanked by the markers
Bn-C9-p20106801 and Bn-C9-p39911768 and a BLAST
search of this region identified a potential ortholog to
Arabidopsis Bile acid: sodium symporter family protein
(BATS) at 29,099,176 bp. The allele from BNC at this
locus was associated with lower levels of glucoraphanin.

A single QTL (GSL12) on C09 (distinct from GSL14)
was significantly associated over multiple years with up to
39 % of the phenotypic variation in progoitrin. The allele
resulting in increased progoitrin concentration was con-
tributed by the parent VI-158 and functioned in an addi-
tive manner. No associations were detected between this
locus and concentrations of gluconapin or glucoraphanin.
A BLAST search of the TO1000 sequence representing the
interval flanked by the markers Bn-A(09-00100554 (essen-
tially, the end of C09) and Bn-C09-01859507 identified
four 2-ODD genes between 1,386,905 and 1,412,577 bp.
Two of these genes occurred in tandem (1,408,993 and
1,412,577 bp).

Four QTLs (designated GSLO1, GSL02, GSL04, and
GSL06) were associated with variation in gluconapin.
In 3 years of analysis, GSL04 was identified in the inter-
val on CO3 flanked by the markers Bn-C03-p05308401
and Bn-C03-p06163365 and accounted for up to 35 % of

the phenotypic variation associated with gluconapin. A
BLAST search of TO1000 genome using Arabidopsis pro-
tein sequences for AOP2/AOP3 revealed a highly signifi-
cant hit to an annotated 2-OGD gene in the same interval
(5,961,505-5,962,801 bp) (Fig. 2; Table 5). Three QTLs
(GSLO05, GSL09, and GSL10) were associated with indolic
GSL accumulation in 2009 and 2010. GSL09 had the larg-
est effect explaining up to 20 % of the phenotypic varia-
tion in 2009. Alleles increasing indolic GSL concentration
were contributed by both parents (GSLO5 from VI-158,
GSL09 and GSL10 from BNC). BLAST searches of the
TO1000 genome failed to identify candidate genes in these
regions with homology to previously identified genes
associated with indolic GSL biosynthesis or regulation. A
single QTL (GSL11), associated with the aromatic GSL
gluconasturtiin in 2009 and 2010, was identified on C07
in the interval flanked by the markers Bn-C07-p42734095
and Bn-C07-p43802746. BLAST searches of this region
identified a putative copy of BATS (similar to GSL14) in
the adjacent interval at 42,549,931 bp. The allele enhanc-
ing the concentration of gluconasturtiin was contributed by
VI-158.

Alignment of previously sequenced B. oleracea BAC
clones (containing known GSL genes) to the TO1000
genomic sequence suggested the most likely position for
BAC ‘B21H13’ (GSL-ALK) was on C09 from 1,366,584
to 1,498,031 bp, while the most likely position for BAC
‘B21F5’ (GSL-PRO) was on CO05 from 8,765,483 to
8,850,857 bp (Fig. 2). The most likely position for BAC *
B19N3’ (GSL-ELONG) in the TO1000 genome occurs on
CO02 from 50,444,237 to 50,538,201 bp.

Discussion

Functional analysis of natural variation has been an
extremely useful tool for the identification and cloning of
several genes involved in GSL biosynthesis and regulation
in Arabidopsis. Unfortunately, most commercial broccoli is
derived from a limited number of Calabrese-type cultivars
with a relatively narrow genetic base, representing only
a small portion of the usable variability within the italica
gene pool (Gray 1982). Crosses between broccoli and other
varietal types of B. oleracea, such as cabbage (capitata)
and cauliflower (botrytis), have produced mapping popula-
tions that have proven useful in identifying genetic factors
associated with qualitative GSL variability [e.g., determi-
nation of aliphatic side chain length and the alkenylation
of aliphatic GSLs (Gao et al. 2004, 2005, 2006)], but have
not provided insight into the considerable quantitative vari-
ation of glucoraphanin that is observed in the florets of dif-
ferent broccoli accessions (Brown et al. 2002; Kushad et al.
1999).
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Fig. 2 Quantitative trait loci associated with glucosinolate vari-
ability in the F2:3 broccoli population (VI158 x BNC), location of
BLAST results of candidate genes using known Arabidopsis protein

progotirin

7/

gluconasturtiin

The B. oleracea L. italica mapping population,
VI-58 x BNC, was developed to study the observed quali-
tative and quantitative differences in GSL profiles between
the parents. Unlike most broccoli accessions, VI-158 pro-

duces high levels of progoitrin and moderate amounts of
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sequences, and alignment of previously sequenced B. oleracea BAC
clones to the TO1000 genomic sequence

glucoiberin and sinigrin. Conversely, BNC produces higher
levels of glucoraphanin. Both parents produce comparable
levels of gluconapin. The glucoraphanin levels of BNC
reported here are somewhat misleading, as it is a landrace
accession and not genetically fixed. The original BNC seed
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Fig. 2 continued

(obtained in limited quantities) has been self-pollinated for
replicated trials and the resultant progeny show consider-
able variation in GSL content (data not shown). The popu-
lation, however, was created by self-pollinating a single F,
plant that fortuitously provided the principle genetic factors
originating from the heterogeneous landrace.

Initial GSL analysis of this population in Illinois (1999
and 2000) suffered from a restricted number of families in
2000 (86 F,.; families) due to inadequate amounts of seed
and a sparse genetic linkage map (Brown et al. 2007). The
recent saturation of the map with SNP markers anchored to
the TO1000 rapid cycling Brassica genomic sequence and

the inclusion of two additional years of data from North
Carolina has allowed for a thorough and powerful analy-
sis of both quantitative and qualitative GSL variability in
this population. Data from 2000 were included in this study
but it should be noted that only one QTL (GSLOS8) was sig-
nificant in that year and was supported by the results of the
additional 3 years.

The accumulation of 3C aliphatic GSLs in this popula-
tion was associated primarily with a single locus on C05
and was observed in all four environments. Our alignment
of the sequenced BAC clone ‘B21F5’ and BLAST searches
of the TO1000 genome suggested that the most likely
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Fig. 2 continued

candidate is the previously described IPMS gene that has
been designated ‘GSL-PRO’ (Gao et al. 2006). A moderate
but significant correlation (r = 0.56) between glucoiberin
and sinigrin across environments also provides support for
the hypothesis of common regulation for these 3C aliphatic
GSLs. What was perhaps most surprising, however, was
the lack of corresponding evidence for common regula-
tion of the 4C aliphatic GSLs. Despite the co-localization
of previously described GSL genes (MAM, ALK, MYB-
28) to multiple QTL intervals and the alignment of previ-
ously sequenced BAC clones containing known aliphatic
GSL genes, the analysis did not detect a single locus that
was associated with the variation of more than one 4C ali-
phatic GSL in any year of analysis. Correlations between
glucoraphanin concentrations and downstream 4C aliphatic
GSLs (gluconapin and progoitrin) were also not signifi-
cant (r = 0.19 and 0.18, respectively). Given the size of

@ Springer

the population we acknowledge that the analysis may not
have identified all genetic factors associated with the accu-
mulation of individual GSLs, but given the magnitude of
the phenotypic variation associated with identified QTL
(Table 5) and the proportion of total variation attributed
to genetic variation (Table 3), these potentially unidenti-
fied QTLs likely represent relatively limited sources of
variation.

It has been suggested that glucoraphanin accumula-
tion in broccoli is associated with a non-functional GSL-
ALK locus (Li and Quiros 2003) and that one strategy
for enhancing glucoraphanin concentrations in Brassica
vegetables such as cauliflower or cabbage would be to
block the side chain modification pathway downstream
of glucoraphanin (Liu et al. 2012). As all families in this
study (and both parents) accumulated varying amounts of
gluconapin, it is likely that at least one functional copy
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of GSL-ALK is present in this population. The alignment
of the BAC clone ‘B21H13’ to the distal end of C09 sug-
gests that this is the most likely position of the previously
described GSL-ALK locus (Gao et al. 2004). Interestingly,
this locus was not associated with variability of glucon-
apin or glucoraphanin but was significantly associated with
up to 39 % of the variability of progoitrin. One possible
explanation for what we have observed is that this region
potentially contains a functional copy of GSL-ALK (from
both parents) and is also the location of GSL-OH activ-
ity in B. oleracea. Our BLAST searches of the TO1000
genomic sequence identified four putative 2-ODD genes
in this region (<1,869,607 bp) but further work will be
required to determine if the observed variability in progoi-
trin is attributable to the functional ALK allele from VI-158
(pleiotropy) or to one of the tandem occurring 2-OGD
genes (linkage). It is also interesting to note that while glu-
conapin was not associated with the predicted location of
ALK (BAC clone ‘B21H13’) on CQ9, it was significantly
associated in 3 years with a region of CO03 (5,308,401-
6,163,365 bp) that includes a second putative ALK candi-
date in the TO1000 genomic sequence between 5,961,505
and 5,962,801 bp. Given the extensive genome duplication
that has been observed in B. oleracea (Parkin et al. 2003),
it is not unreasonable to speculate that both parents contrib-
uted functional ALK genes on C09, and that the landrace
BNC contributed a second partially redundant copy of ALK
on CO03, not present in VI-158.

The relationship between the accumulation of progoi-
trin and glucoraphanin was surprising. We could find no
evidence to suggest that reducing progoitrin would lead to
a subsequent increase in glucoraphanin. To illustrate this
further, we compared the mean glucoraphanin concentra-
tion of the 20 F,.; families with highest progoitrin concen-
tration in North Carolina (mean = 10.3 umol/g progoitrin)
with the 20 families accumulating the lowest concentration
of progoitrin (mean = 0.2 pumol/g progoitrin) and found
that the mean glucoraphanin concentration was not sig-
nificantly different between the two groups (11.8 and 12.1
umol/g glucoraphanin, respectively) (Fig. 3).

The alignment of the BAC ‘B19N3’ to the TO1000
genomic sequence provides support that the interval flank-
ing GSLO3 on C02 (associated with glucoraphanin) likely
corresponds to the previously identified GSL-ELONG
location (Gao et al. 2005). BLAST searches of the cor-
responding interval of the TO1000 genomic sequence
identified at least one full length MAM gene and the only
MYB-28 TF that could be identified on C02. Due to the
presence of this TF, it is likely that this locus also corre-
sponds to the segment of C02 introgressed from B. villosa
into F; broccoli varieties commercialized under that brand
name Beneforte® (Traka et al. 2013), but the uninforma-
tive nature of the molecular markers used in the previous

umol/g
14

M progoitrin glucoraphanin I gluconapin

12

10

2 .
0

High Progoitrin

=

Low Progoitrin

Fig.3 Comparison of the 20 highest (mean = 10.3 umol/g) and 20
lowest (mean = 0.2 umol/g) progoitrin-producing families in the F,.;
broccoli population VI158 x BNC and their respective average gluc-
oraphanin and gluconapin concentrations

study makes comparisons inconclusive. The concentrations
of glucoraphanin in Beneforte® reported by that study (20—
30 umol/g) are comparable to the concentrations we have
observed in our highest accumulating families over four
environments (20.9-31.6 pmol/g). MYB-28 and MAM are
less than 500 kb apart in the TO1000 genome and further
work will be required to validate if either (or potentially
both) is responsible for the higher levels of observed glu-
coraphanin. It should be noted, however, that this locus is
not significantly associated with gluconapin or progoitrin
(which would be expected from GSL-ELONG) but is asso-
ciated with the accumulation of both 3- and 4-C methyl-
sulfinyl-GSLs (glucoraphanin and glucoiberin) which
would not be expected solely as a function of side chain
elongation. Additionally, it should be noted that both par-
ents contained relatively high levels of 4-C aliphatic GSLs
which suggests they both possess functional copies of
GSL-ELONG.

BLAST searches of the TO1000 genomic interval con-
taining GSL14 on C09 flanked by markers Bn-20106801
to BN-39911768 (containing the third QTL associated with
glucoraphanin concentration) identified a putative ortholog
to bile acid:sodium symporter family protein 5 (BATS).
Knock-out mutants of BAT5 in Arabidopsis have shown
decreased aliphatic GSL concentrations and it has been
suggested that BAT5 plays a role in translocation across
the chloroplast membrane to the site of side chain elonga-
tion (Sawada et al. 2009). Interestingly, a second ortholog
to BATS was also identified on CO7 near GSL-11 which
was significantly associated with variation of the aromatic
GSL gluconasturtiin. Phenylalanine-derived GSLs such as
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gluconasturtiin also undergo an elongation step homolo-
gous to aliphatic GSLs, but to our knowledge the enzy-
matic steps associated with this have yet to be elucidated.
BLAST searches of the TO1000 genomic interval contain-
ing GSLO7 (associated with glucoraphanin and flanked by
markers Bn-C4-p43279394 and Bn-A04-13116453) did
not readily reveal a GSL candidate gene, but did reveal the
presence of multiple ATP-binding cassette (ABC) trans-
porters which can function in the transport across cellular
membranes. The transport of GSLs for enzymatic reac-
tions and the eventual sequestering within plant vacuoles is
not well understood in either Arabidopsis or Brassica, but
could reflect potential regulatory mechanisms for maintain-
ing levels of specific GSLs within the plant cell.

Given the health benefits associated with glucoraphanin,
understanding how this compound is accumulated in broc-
coli, cabbage, and other cruciferous vegetables is essential.
The plant material and genomic resources utilized in this study
have provided additional support for previously identified loci
associated with GSL regulation. This work has also identified
additional genetic factors suggesting that altering, enhancing,
or regulating individual 4C aliphatic GSLs in Brassica veg-
etables may be more complex than previously assumed. This
finding is consistent with recent genome-wide association
studies in Arabidopsis thaliana that also suggest the involve-
ment of previously unidentified loci (Chan et al. 2011).
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